44,405 research outputs found

    Impact of radiative corrections on sterile neutrino scenarios

    Get PDF
    In sterile neutrino scenarios, radiative corrections induce mass splittings proportional to the top Yukawa coupling, in contrast to the three active neutrino case where the induced splittings are proportional to the tau Yukawa coupling. In view of this, we have analyzed the stability of the four-neutrino schemes favored by oscillation experiments, consisting in two pairs of nearly degenerate neutrinos separated by the LSND gap. Requiring compatibility with the measurements of the abundances of primordial elements produced in Big Bang Nucleosynthesis, we find that when the heaviest pair corresponds to the solar neutrinos (mainly an admixture of nu_e - nu_s) the natural mass splitting is 3-5 orders of magnitude larger than the observed one, discrediting the scenario from a theoretical point of view. On the contrary, the scheme where the heaviest pair corresponds to the atmospheric neutrinos (mainly an admixture of nu_mu - nu_tau) is safe from radiative corrections due to the small sterile component of these mass eigenstates.Comment: 14 pages, LaTeX, 2 figures. Discussion enlarged, references added and typos correcte

    The Vector Curvaton

    Full text link
    We analyze a massive vector field with a non-canonical kinetic term in the action, minimally coupled to gravity, where the mass and kinetic function of the vector field vary as functions of time during inflation. The vector field is introduced following the same idea of a scalar curvaton, which must not affect the inflationary dynamics since its energy density during inflation is negligible compared to the total energy density in the Universe. Using this hypothesis, the vector curvaton will be solely responsible for generating the primordial curvature perturbation \zeta. We have found that the spectra of the vector field perturbations are scale-invariant in superhorizon scales due to the suitable choice of the time dependence of the kinetic function and the effective mass during inflation. The preferred direction, generated by the vector field, makes the spectrum of \zeta depend on the wavevector, i.e. there exists statistical anisotropy in \zeta. This is discussed principally in the case where the mass of the vector field increases with time during inflation, where it is possible to find a heavy field (M >> H) at the end of inflation, making the particle production be practically isotropic; thus, the longitudinal and transverse spectra are nearly the same order which in turn causes that the statistical anisotropy generated by the vector field is within the observational bounds.Comment: LaTex file in Aipproc style, 6 pages, no figures. Prepared for the conference proceedings of the IX Mexican School of the DGFM-SMF: Cosmology for the XXIst Century. This work is entirely based on Refs. [23-26] and is the result of Andres A. Navarro's MSc thesi

    Consistency in NLO analyses of inclusive and semi-inclusive polarized DIS data

    Get PDF
    We perform a detailed study of the consistency between different sets of polarized deep inelastic scattering data and theory, from the standpoint of a next to leading order QCD global analysis, and following the criteria proposed by Collins and Pumplin. In face of recent suggestions that challenge the usual assumption about parent parton spin independence of unpolarized fragmentation functions, we specially focus on polarized semi-inclusive data.Comment: 17 pages, 5 figure

    Constraints on gluon polarization in the nucleon at NLO accuracy

    Get PDF
    We compare constraints on the gluon polarization in the nucleon obtained in next to leading order global QCD fits to polarized deep inelastic scattering data with those coming from observables more directly linked to the gluon polarization, such as the double spin asymmetry measured by Phenix at RHIC, and high-pT hadron production studied by COMPASSComment: 4 pages, 3 figures, 1 tabl
    corecore